Publications
Détails
Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J.F.R, Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., Guerra, A.J.T, Haregeweyn, N., Ionita, I., Imwangana, F.M., Moeyersons, J., Moshe, I., Samani, A.N., Niacsu, L., Nyssen, J., Otsuki, Y., Radoane, M., Rysin, I., Ryzhov, Y.V. & Yermolaev, O. 2016. ‘How fast do gully headcuts retreat ?’. Earth-Science Reviews 154: 336-355. Elsevier. I.F. 7,89.
Article dans une revue scientifique / Article dans un périodique
Gully erosion has important on and off site effects. Therefore, several studies have been conducted over the past
decades to quantify gully headcut retreat (GHR) in different environments. Although these led to important
site-specific and regional insights, the overall importance of this erosion process or the factors that control it at a
global scale remain poorly understood. This study aims to bridge this gap by reviewing research on GHR and
conducting a meta-analysis of measured GHR rates worldwide. Through an extensive literature review, GHR
rates for 933 individual and actively retreating gullies have been compiled from more than 70 study areas worldwide
(comprising a totalmeasuring period of N19 600 years). Each GHR ratewas measured through repeated field
surveys and/or analyses of aerial photographs over a period of at least one year (maximum: 97 years, median:
17 years). The data show a very large variability, both in terms of gully dimensions (cross-sectional areas ranging
between 0.11 and 816 m2 with a median of 4 m2) and volumetric GHR rates (ranging between 0.002 and 47
430 m3 year−1 with amedian of 2.2m3 year−1). Linear GHR rates vary between 0.01 and 135 myear−1 (median:
0.89 myear−1), while areal GHR rates vary between 0.01 and 3628 m2 year−1 (median: 3.12m2 year−1). An empirical
relationship allows estimating volumetric retreat rates from areal retreat rates with acceptable uncertainties.
By means of statistical analyses for a subset of 724 gullies with a known contributing area, we explored
the factors most relevant in explaining the observed 7 orders of magnitudes of variation in volumetric GHR
rates. Results show that measured GHR rates are significantly correlated to the runoff contributing area of the
gully (r2 = 0.15) and the rainy day normal (RDN; i.e. the long-term average annual rainfall depth divided by
the average number of rainy days; r2=0.47). Other factors (e.g. land use or soil type) showed no significant correlation
with the observed GHR rates. This may be attributed to the uncertainties associatedwith accurately quantifying
these factors. In addition, available time series data demonstrate that GHR rates are subject to very large
year-to-year variations. As a result, average GHR rates measured over short (b5 year) measuring periods may be
subject to very large (N100%) uncertainties.We integrated our findings into aweighted regressionmodel that simulates
the volumetric retreat rate of a gully headcut as a function of upstream drainage area and RDN. Whenweighing each GHR observation proportional to itsmeasuring period, thismodel explains 68% of the observed variance
in GHR rates at a global scale. For 76% of the monitored gullies, the simulated GHR values deviate less than
one order of magnitude from their corresponding observed value. Our model clearly indicates that GHR rates
are very sensitive to rainfall intensity. Since these intensities are expected to increase in most areas as a result of
climate change, our results suggest that gully erosion worldwide will become more intense and widespread in
the following decades. Finally, we discuss research topics that will help to address these challenges.